If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-2t-4=0
a = 5; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·5·(-4)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{21}}{2*5}=\frac{2-2\sqrt{21}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{21}}{2*5}=\frac{2+2\sqrt{21}}{10} $
| 36+6x-3x=27x+18 | | 6x-12=8x+22 | | (7.5x10^-4)x(4.5x10^-2)=6.1x10^1 | | 4(5n-7)=10n=2 | | 20=25+15+18+p/4 | | 2(4x-3)^2+5=55 | | 16(2x+4)=x+12x+ | | 3x-4-4=3x-10-3x-6 | | 4(2+3c=56 | | 8z=3z+5 | | -8x+9=81 | | 4x^2+3+7x=0 | | .9y=-2 | | 20-4y=32 | | -1=x-2x2 | | 3x+1/4-x-2/2=1/4 | | 15x+36=146 | | t=-16t^2+216 | | 3y+14=10y | | 10*z/3=6 | | 1=5–2j | | 5x+48=-3 | | 15=10n | | 5x+49/9=-3 | | 14+f=68.9+6.7 | | (x-2)/4-(3x+5)/28=-3 | | n–6=12 | | s–21=27 | | 2(x+3)+20=0 | | 18=3p | | 2(x+3)20=0 | | .75(r-12)=-6 |